Indian Statistical Institute Second Semester Examination 2004-2005 B.Math I Year Analysis II Date:13-05-05 [Max marks : 60]

Time: 3 hrs

- 1. State Inverse function Theorem and Implicit function Theorem. [4]
- 2. Let $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ be the unit circle. Let P be a polygon of N sides with vertices on the circle S where $N \ge 3$. Assume that the polygon encloses the centre of the circle. By using Lagrange method of multipliers prove (a) and (b)

(a) if $\sup\{\text{area of } P : P \text{ as above}\}\$ is attained at P_0 then P_0 is a regular polygon

(b) If sup{perimeter of P : P as above} is attained at P_1 , then P_1 is a regular polygon. [3+3=6]

3. Let (X, d), (Y, m) be metric spaces. Let $Z = X \times Y$. Define $p: Z \times Z \to [0, \infty)$ by

$$p((x_1, y_1), (x_2, y_2)) = [d^2(x_1, x_2) + m^2(y_1, y_2)]^{\frac{1}{2}}$$

[4]

Show that p is a metric.

4. Let (X, d) be a metric space. Define m by

$$m(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

for all x, y in X.

- a) Show that m is a metric on X [3]
- b) $x_n \to \alpha$ in $(X, d) \Leftrightarrow x_n \to \alpha$ in (X, m) [2]

c) Let $F \subset X$. Show that F is a closed set in $(X, d) \Leftrightarrow F$ is a closed set in (X, m) [2]

1

- 5. Let $g : (a \delta, a + \delta) \to R$ be any continuous function such that g(a) > g(x) for all $x \neq a$. Show that there exist two sequences x_n, y_n such that $x_n < a < y_n, x_n \to a, y_n \to a$ and $g(x_n) = g(y_n)$ [3]
- 6. Let $f: R \to R$ be the function given by $f(x) = x + 2x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
 - a) Show that f'(0) = 1 and for $x \neq 0$
 - $f'(x) = 1 2\cos(\frac{1}{x}) + 4x\sin(\frac{1}{x})$ $f''(x) = \sin(\frac{1}{x})[4 - \frac{2}{x^2}] - \frac{4}{x}\cos(\frac{1}{x})$ [1] b) Show that f' is not continuous at 0 [1]
 - c) Show that there exist sequences $a_n, b_n \quad a_n > 0, \quad b_n > 0, \quad a_n \to 0, \quad b_n \to 0$ such that $f'(a_n) \to 3$ and $f''(b_n) \to -1.$ [2]
 - d) Show that there exist a sequence $C_n \to 0$, $C_n > 0$ such that $f'(C_n) = 0$, $|C_n f''(C_n)| \to \infty$ [2]

e) [By using (5) if necessary] Show that there exists two sequences $\alpha_n, \beta_n, \quad \alpha_n > 0, \beta_n > 0, \quad \alpha_n < C_n < \beta_n, \quad \alpha_n \to 0, \beta_n \to 0$ such that $f(\alpha_n) = f(\beta_n).$ [2]

- 7. Let (X, d) be a compact metric space $f : X \to X$ any function such that d(f(x), f(y)) < d(x, y) for all $x \neq y$. Show that f has a fixed point [3]
- 8. Let $g: R \to R$ be given by $g(x) = \log(1+e^x)$. Show that |g(x)-g(y)| < |x-y| for all $x \neq y$ and g has no fixed point. [2]
- 9. a) Let $X = \bigcup_{n=3}^{\infty} [n, n + \frac{1}{n}]$. If $f : X \to R$ is given by $f(x) = x^2$, show that f is not uniformly continuous. [1]
 - b) Let $Y = \bigcup_{n=10}^{\infty} [n, n + \frac{1}{n^2}]$. Define $g: Y \to R$ by $g(x) = x^2$. i) Let $F_N = \bigcup_{n=N}^{\infty} [n, n + \frac{1}{n^2}]$ for $N \ge 10$. Show that $\lim_{N \to \infty} \sup \{|g(x) - g(y)| : x, y \in F_N, |x - y| \le \frac{1}{2}\} = 0$ [2]

ii) Show that g is uniformly continuous. [3]

2

- 10. Let a, b > 0. Let $g = (g_1, g_2) : [0, 1] \to R^2$ be any continuous function such that g(0) = (0, 0) and $\frac{g_1^2(1)}{a^2} + \frac{g_2^2(1)}{b^2} > 1$. Show that there exists pin [0,1] such that $\frac{g_1^2(p)}{a^2} + \frac{g_2^2(p)}{b^2} = 1$ [3]
- a)Show that (X, d) is disconnected ⇔ there exists a continuous onto function f : X → {0,1}. [3]
 b) Show that continuous image of a connected set is connected. [2]
 c) If A₁, A₂,..., A_k are connected subsets of (X, d) such that A_i ∩

 $A_{i+1} \neq \text{empty for } i = 1, 2, \dots k-1, \text{ then show that } A_1 \cup A_2 \cup \dots \cup A_k$ is connected [3]

d) Let

$$A = \{(x, y) : x^{2} + y^{2} = 1\}$$

$$B = \{(x, y) : x^{2} + y^{2} = 2\}$$

$$C = \{(x, y) : y = 0\}.$$

Show that each of the sets $A, B, C, A \cup B \cup C$ is connected. [4]

- 12. Let $A = \{x \in R : x \text{ is rational}, 0 \le x \le 2\}$, show that
 - a) A is closed subset of rationals.
 - b) A is not a closed subset of reals.
 - c) A is not compact. [3]